Journal of Organometallic Chemistry, 81 (1974) C40–C42 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PREPARATION AND X-RAY CRYSTAL AND MOLECULAR STRUCTURE OF μ -SULFURDIOXIDEBIS(HYDRIDODICARBONYLTRIPHENYL-PHOSPHINEIRIDIUM)

MARIA ANGOLETTA, PIER L. BELLON, MARIO MANASSERO and MIRELLA SANSON

Istituto di Chimica Generale ed Inorganica, Universita' degli Studi, 21, via G. Venezian, 20133 Milan (Italy)

(Received October 3rd, 1974)

Summary

The preparation and the spectra of $Ir_2(CO)_4(PPh_3)_2(SO_2)_2$ and of the title compound are reported; in the molecular structure of the latter, determined by X-ray crystallographic analysis, there is a relatively long Ir—Ir bond which is accounted for in terms of the acidic nature of SO₂.

When a benzene solution of $Ir_2(CO)_6(PPh_3)_2$ [1], is treated with SO₂ at room temperature, a pale yellow compound is obtained, whose analytical data and molecular weight agree with the formula $Ir_2(CO)_4(PPh_3)_2(SO_2)_2$ (I). The IR spectrum of I in Nujol displays the frequencies $\nu(CO)$, 2095, 2059, 2048, 2028; $\nu(SO)_{asym}$. 1223, 1209; $\nu(SO)_{sym}$. 1064, 1051 cm⁻¹. When hydrogen is bubbled through a solution of (I) at room temperature a colourless compound is obtainewhich by analyses is [IrH(CO)₂(PPh₃)]₂SO₂ (II). The IR spectrum in Nujol shows the bands $\nu(CO)$ 2025, 2020, 2003; $\nu(IrH)$ 2127; $\delta(IrH)$ 840, 815; $\nu(SO)_{asym}$. 1190, 1177; $\nu(SO)_{sym}$. 1046, 1037 cm⁻¹. The band at 2127 cm⁻¹ can be assigned to the Ir—H stretching by comparing the spectrum of II with that of the corresponding deuteride whose Ir—D stretching is found at 1500 cm⁻¹.

The crystal and molecular structures of compounds I and II are presently under investigation; preliminary results for II are reported here. Crystal data. $C_{40}H_{32}Ir_2O_6P_2S$, M = 1087.1, monoclinic; a 14.80(1), b 16.22(1), c 16.56(1) Å, β 107.67(5)°; D_m (flotation) 1.88 g cm⁻³; Z = 4, D_c 1.906; space group C2/c (no. 15).

A total of 2031 independent reflections were measured by counter method with Mo- K_{α} radiation (λ 0.7107 Å) monochromatized on graphite. The structure solved by Patterson and Fourier methods, is being refined by full matrix least squares; the present R is 0.035. Exhaustive refinement will eventually allow the positions of the hydride ions to be determined.

The crystal consists of discrete molecules possessing crystallographic sym-

Fig. 1. ORTEP view of a molecule of the title compound (phenyl rings and hydrido ligands have been omitted). Relevant bond distances (Å) and angles (deg.) are: lr - lr', 2.759(2); lr - S, 2.313(3); lr - P, 2.309(3); lr - C(1), 1.94(1); lr - C(2), 1.90(1); C(1) - O(1), 1.12(1); C(2) - O(2), 1.13(1); lr' - lr - S, 53.4(1); lr - S - lr', 73.1(1); S - O, 1.457(7); O - S - O', 113.7(2).

metry C_2 ; the sulfur atom lies on the two-fold axis. An overall view of the molecule is shown in Fig. 1. Each iridium atom is at the centre of a distorted octahedron whose apices are occupied by the other iridium and by atoms S, P, C(1), C(2) and H; the latter, not shown, is postulated at the apex *trans* to C(1). The mutually *trans* H⁻ and CO ligands will destabilize each other [2]; we observe a complicated PMR spectrum which would not be expected for the symmetric structure we find, which is an indication that in solution a different isomer of II is stable.

A naive description of the electronic structure in II, as adopted for other binuclear cluster complexes containing a bridging SO_2 molecule [3, 4] involves the donation of one electron pair of sulfur to the metal atoms: in each $IrH(CO)_2(PPh_3)$ moiety the metal achieves the inert gas configuration by accepting two electrons, one from sulfur and one from the other metal atom. However, SO_2 is known to behave as a Lewis acid towards mononuclear rhodium and iridium complexes [5] and towards certain cluster molecules [6] as it does towards halide ions and ligands [7].

An important feature which accompanies the presence of bridging SO₂ in a binuclear cluster complex is the lengthening of the M-M bond in comparison with molecules where, in absence of such a bridge, a formal covalent bond connects the two metal atoms. The Ir-Ir distance observed here, 2.759(2) Å. is longer than those observed in Ir₄(CO)₁₂, 2.68 Å [8], in Ir₄(CO)_{12.m} (PPh₃)_m, 2.72 Å [9], and in Ir₂(NO)₄(PPh₃)₂, 2.717 Å [10]. Further, the Fe- Fe distances in Fe₂(CO)₈(SO₂), 2.717 Å [3] and in Fe₂(C₅H₅)₂(CO)₃(SO₂), 2.591 Å [4] are both longer than the distances of 2.50-2.53 Å reported for several Fe-Fe bonds in absence of SO₂ bridges [11]. This elongation can be accounted for if the

acidic character of sulfur dioxide is taken into account; in this molecule, the acceptor orbital is the lowest π^* orbital, mainly localized on sulfur, which results from the out-of-phase overlap of three p orbitals [12]. In the present case and is the two Fe₂ complexes cited above, which also possess two-fold symmetry, two suitable metal orbitals (one for each metal atom) and the π^* orbital form a basis for a A + 2B representation of group C_2 ; the A orbital will be M-M bonding and M-S bondin. If both these orbitals are filled (the remaining B orbital is totally anti-bonding) one must expect: (i) the M-M bond to be relatively long and (ii) since a π^* orbital of SO₂ is implied which is slightly O-O bonding, the S-O distance to be longer and the O-S-O angle to be smaller than in free SO₂ (cf. the data in the figure caption with the values of 1.43(1) Å and 119.0(5)° observed in gaseous SC [13].

This work was financially supported by the Italian National Research Council. We thank Prof. L. Malatesta and Dr. P. Fantucci for helpful discussions

References

- 1 M. Angoletta, J. Organometal. Chem., in press.
- 2 R.G. Pearson, Inorg. Chem., 12 (1973) 712.
- 3 J. Meunier-Piret, P. Piret and M. van Meersche, Bull. Soc. Chim. Belg., 76 (1967) 374.
- 4 M.R. Churchill and K.L. Kalra, Inorg. Chem., 12 (1973) 1650
- 5 K.W. Muir and J.A. Ibers, Inorg. Chem., 8 (1968) 1921; S.J. LaPlaca and J.A. Ibers, ibid., 5 (1966) 405
- 6 S. Otsuka, Y. Tatsuno and M. Miki, Chem. Commun., (1973) 445.
- 7 M.R. Snow and J.A. Ibers, Inorg. Chem., 12 (1973) 224 and ref. therein.
- 8 G.R. Wilks, Diss. Abstr., 26 (1966) 5029.
- 9 V.G. Albano, P.L. Bellon and V. Scatturin, Cheni. Commun., (1967) 730.
- M. Angoletta, G.F. Ciani, M. Manassero and M. Sansoni, Chem. Commun., (1973) 789.
 R.F. Bryan and P.T. Greene, J. Chem. Soc. A. (1970) 3064; R.F. Bryan, P.T. Greene, M.J. Newlands and D.S. Field, ibid., (1970) 3068; M.R. Churchill and P.H. Bird, Inorg. Chem., 8 (1969) 1941;
- P. McArdle, A.R. Manning and F.S. Stephens, Chem. Commun., (1969) 1310.
- 12 A.D. Walsh, J. Chem. Soc., (1953) 2226.
- 13 J. Haase and M. Winnewuser, Z. Naturforsch. A, 23 (1968) 61.